sets

set: unordered collection of objects.
(an be anything (including othersed)

$$\begin{cases} 0, 2, \frac{1}{13} \\ 1 = 2 \end{cases} = \{0, 2, 0, \frac{1}{3} \\ 3 \end{bmatrix} = \{2, \frac{1}{3} \\ 3, 0 \end{bmatrix}$$

ordering and repeated elements do not change the bet.
how to describe a set:
a) "set of red finits"
b) $[apple, stawberg, cherry...]$
c) $[[X] \in fruits [x is red] = Set builder notation X
such that
 $sich that$
 $sich that$
 $sich that is red.$
(ardinality: the number of unique elements in the set
 $set A$, cordinality of A is [A]
 $\{1, 2, 3\}$] = 3 $[\frac{1}{2}[.23, 3] = 2$ $[nitt, same symbol as$
 $[\frac{1}{1}, 1, 1] = 1$$

subsets

let A and B be sets.

$$A \subseteq B$$
 iff all elements of A are also in B
 $\{1,25 \in \{3,2,4,1\}\}$
 $A \subset B$ means A is a proper subset of B,
meaning $A \subseteq B$ and $A \neq B$.
 \forall note: $\{1\}$ empty set $\oint \subseteq A$ for all sets A
 \oint or, null set.
 $\forall entre : \{1]$ element $x \in \phi$ then $x \in A := \phi \subseteq A$
 $always false$
 $always false$
 $bud, \phi \notin A$ for all sets A
 \in means "is an element of"
 $ex) A := \{1/2,3\}$
 $\phi \notin A$, but $\phi \notin \{0,1/2\}$
 $B := \{1\phi\}\}$ $\phi \notin B$
 $\{\phi\} \in \{0\}\}$

ex) Prove ASB where $A = \{\lambda(2,3) + (1-\lambda)(7,4) \mid \lambda \in [0,1]\}$

operations

ordered poirs.

First, let's simplify the define of A:

$$\frac{1}{1} = \frac{1}{1} \frac{1}{2,3} + \frac{1-\lambda}{1,4} \frac{1}{\lambda} \frac$$

Then pick a representative element of H. Let's say (C) a) e Then, by define of A, $C = 7-5\lambda$ where $\chi \in \mathbb{R}, \in \mathbb{C}_0, \mathbb{C}_0$. $d = 4-\lambda$ This means $\lambda \in \mathbb{C}$

now, we have element $(r,d) \in \mathbb{R}^2$, r = 7,0 and d = 7,0. This element, by define of B, r = also = an element of B. So $A \subseteq B$.